RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2018-21] B.A./B.Sc. FIRST SEMESTER (July – December) 2018 Mid-Semester Examination, September 2018

MATHEMATICS (Honours)

Paper: I

Date : 24/09/2018 Time : 11 am – 1pm

[Use a separate Answer Book for each group] <u>GROUP – A</u> Module 1

Answer **any three** from question nos. 1 to 5 :

- 1. For any finite set A, if $f: A \rightarrow A$ is injective, then show that f is surjective.
- 2. Let $G = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} | n \in \mathbb{Z} \right\}$. Show that *G* becomes a group under usual matrix multiplication.
- 3. Show that a group (G,*) is commutative if and only if $(a*b)^2 = a^2*b^2 \forall a, b \in G$.
- 4. Show that the number of even permutations in S_n is same as that of the odd permutations.
- 5. If $\beta = (1 \ 2 \ 3)(1 \ 4 \ 5) \in S_{1952}$ then write β^{99} in cycle notation.

Answer **any one** from question nos. 6 & 7:

- 6. Prove that the set of all algebraic numbers is countable.
- 7. Let $S \subseteq \mathbb{R}$ be a non-empty bounded set. Let $S_1 = \{ |x y| | x, y \in S \}$.

Find the supremum and infimum of S_1 .

Answer **any one** of question from 8 & 9.

- 8. a) Prove using mathematical induction that $1 + \frac{1}{4} + \dots + \frac{1}{n^2} \le 2 \frac{1}{n}, \forall n \in \mathbb{N}$.
 - b) Prove that $\sqrt[3]{3}$ is an irrational number.
- 9. a) Let $x \in \mathbb{R}$. Prove that there exists an integer $n \in \mathbb{Z}$ such that $n \le x \le n+1$.
 - b) Let *A*, *B* be two infinite sets. Show that $A \times B$ is countable if and only if $A \bigcup B$ is countable.

<u>GROUP – B</u>

Module 2

- 10. Answer any two questions of the following:
 - a) Solve the equation $(2x^2y 3y^4)dx + (3x^3 + 2xy^3)dy = 0.$

Full Marks : 50

 (3×4)

(3+3)

 (1×6)

 (1×7)

(3+3)

 (2×5)

- b) Solve, using the method of variation of parameters, the equation $\frac{dz}{dx} + \frac{z}{r} \log z = \frac{z}{r^2} (\log z)^2$.
- c) Reduce the differential equation $y = 2px p^2y$ to Clairaut's form by the substitutions $y^2 = Y, x = X$ and then obtain the complete primitive and singular solution, if any.
- 11. Answer **any one** question of the following:

a) Solve the equation
$$p^2 + p - 6 = 0$$
, $\left(p = \frac{dy}{dx} \right)$

b) Solve:
$$x\frac{dy}{dx} - y = x\sqrt{x^2 + y^2}$$

Answer **any one** from question nos.12 & 13:

- 12. Show that the condition that the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my = 1 is right angled if $(a+b)(al^2 + 2hlm + bm^2) = 0$.
- 13. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of intersecting straight lines, show that the area formed by the bisectors of the angles between them and the *x*-axis is

$$\frac{1}{2} \cdot \frac{g^2 - ca}{h^2 - ab} \cdot \frac{\sqrt{(a-b)^2 + 4h^2}}{|h|}$$

Answer any two from questions nos. 14, 15 & 16:

- 14. Show that the points (2,4,6), (3,4,5), (4,4,4) and (5,4,3) are coplanar.
- 15. Let $\vec{a}, \vec{b}, \vec{c}$ be respectively the position vectors of the vertices A, B, C of the $\triangle ABC$. Show that

the position vector of its orthocentre is $\frac{\tan A\vec{a} + \tan B\vec{b} + \tan C\vec{c}}{\tan A + \tan B + \tan C}.$

16. Let *ABCD* be a quadrilateral and *P*, *Q* be respectively the midpoints of the diagonals *AC* and *BD*. Show that $AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2 + 4PQ^2$.

_____ × _____

 (1×6)

 (2×3)

 (1×3)